Идеальная индуктивность

Сообщение №12974 от Inc 4Кулибин 02 сентября 2002 г. 22:13
Тема: Идеальная индуктивность

> > Пардон, на L разделить не забудьте 8-)

> Да уж, неужели так оно и получается на самом деле, помоему так не может быть,
> из диф.уравнения получается что зависимость i(t) несимметрична относительно оси времени, сдвинута по оси i(t) вниз на cos(фи)? Или я где то ошибся? (см. идеальная индуктивность).


Отклики на это сообщение:

Именно так оно и получается, ошибки нет. А что тут странного? Индуктивность-то идеальная! Сопротивление в замкнутом контуре равно нулю, и накопленный в первые моменты ток (из-за несимметричности начала синусоиды) сохраняется до бесконечности. Если ввести хотя бы небольшое сопротивление, то постоянная составляющая по экспоненте устремится к нулю...


> Именно так оно и получается, ошибки нет. А что тут странного? Индуктивность-то идеальная! Сопротивление в замкнутом контуре равно нулю, и накопленный в первые моменты ток (из-за несимметричности начала синусоиды) сохраняется до бесконечности. Если ввести хотя бы небольшое сопротивление, то постоянная составляющая по экспоненте устремится к нулю...

Ну вообще да, математически все правильно, и смысл понятен если на дифф.ур. посмотреть. Типа Ldi/dt всегда должна быть равна U(t) в любой момент времени, с учетом того что в момент коммутации i=0. Но вот как бы понять физически процесс, например если мы возмем и увеличим в контуре R, сделаем отличной от 0.
почему синусоида выравняется... относительно оси t? (опять же математически все понятно, по экспоненте, 2 составляющая решения исчезнет). Объясните пожайлуста?
За ранее благодарен.


В силу линейности системы "источник напряжения - сопротивление - индуктивность" в ней можно рассматривать два независимых процесса: болтанку под действием синусоиды от источника и изменение постоянной составляющей тока в контуре и связанного с ним падения напряжения на сопротивлении.


Продолжение
Болтанка нас не интересует,поэтому источник можно заменить проводом с нулевым сопротивлением. А процесс в LR контуре очевиден: падение напряжения на резисторе стремится уменьшить ток в индуктивности, от этого уменьшается напряжение на резисторе и т.д. См. дифф.ур. для LR контура.
Удачи!


> Продолжение
> Болтанка нас не интересует,поэтому источник можно заменить проводом с нулевым сопротивлением. А процесс в LR контуре очевиден: падение напряжения на резисторе стремится уменьшить ток в индуктивности, от этого уменьшается напряжение на резисторе и т.д. См. дифф.ур. для LR контура.
> Удачи!

Большое спасибо за ответ. Но я честно говоря не очень вас понял, во первых что такое болтанка, что вы имеете ввиду? И помоему падение напряжения на резисторе уменьшает не сам ток а его производную по времени, это из дифф.уравнения видно, может я не так вас понял? Ldi/dt+Ri=U(t), Ri берет свою долю от U(t), L=const, di/dt меньше, чем если бы не было R для данного момента t.


"Болтанка" - это переменная составляющая тока с частотой источника 8-)
Ну и, разумеется, падение напряжения на резисторе создает отрицательную производную тока, в результате чего ток уменьшается. Но зачем так уж разжевывать на словах то, что и так очевидно из дифф. уравнения: LdI/dt+IR=0.
Решение - I=I0exp[-(R/L)t].


> "Болтанка" - это переменная составляющая тока с частотой источника 8-)
> Ну и, разумеется, падение напряжения на резисторе создает отрицательную производную тока, в результате чего ток уменьшается. Но зачем так уж разжевывать на словах то, что и так очевидно из дифф. уравнения: LdI/dt+IR=0.
> Решение - I=I0exp[-(R/L)t].


Все уловил, спасибо...:)


Физика в анимациях - Купить диск - Тесты по физике - Графики on-line

Реклама:
Rambler's Top100