физические задачи

Сообщение №6114 от pups 21 мая 2009 г. 07:00
Тема: физические задачи

Помогите,пожалуйста!
1) Найти среднее значение квадрата электродвижущей силы E 2m в интервале от t=0 до t=T/2, если электродвижущая сила вычисляется по формуле:
Еm=E0*sin((2πt)/T), Е0=1,4
Я предполагаю,что нужно найти определенный интеграл в пределах от 0 до Т/2 от функции
Еm=E0*sin((2πt)/T).А затем полученное значение возвести в квадрат!Правильно ли я думаю?
2)Известно,что сила, противодействующая растяжению пружины пропорциональна её удлинению,чтобы растянуть пружину на 3 см произвели работу 50Дж. Какая работа будет произведена при растяжении пружины на 5 см?


Отклики на это сообщение:

> 1) Найти среднее значение квадрата электродвижущей силы E 2m в интервале от t=0 до t=T/2, если электродвижущая сила вычисляется по формуле:
> Еm=E0*sin((2πt)/T), Е0=1,4
> Я предполагаю,что нужно найти определенный интеграл в пределах от 0 до Т/2 от функции
> Еm=E0*sin((2πt)/T).А затем полученное значение возвести в квадрат!


> Помогите,пожалуйста!
> 1) Найти среднее значение квадрата электродвижущей силы E 2m в интервале от t=0 до t=T/2, если электродвижущая сила вычисляется по формуле:
> Еm=E0*sin((2πt)/T), Е0=1,4
> Я предполагаю,что нужно найти определенный интеграл в пределах от 0 до Т/2 от функции
> Еm=E0*sin((2πt)/T).А затем полученное значение возвести в квадрат!Правильно ли я думаю?
> 2)Известно,что сила, противодействующая растяжению пружины пропорциональна её удлинению,чтобы растянуть пружину на 3 см произвели работу 50Дж. Какая работа будет произведена при растяжении пружины на 5 см?

Спасибо большое!
А вторая задача?
Я так понимаю,поскольку нам дана работа,то ∫ в пределах от 0 до 3 от функции kxdx,должен равняться 50?Решая данный интеграл,можно найти k. А затем опять найти интеграл от функции kxdx в пределах от 0 до 5,где k-найденное значение.Правильно?


> > 1) Найти среднее значение квадрата электродвижущей силы E 2m в интервале от t=0 до t=T/2, если электродвижущая сила вычисляется по формуле:
> > Еm=E0*sin((2πt)/T), Е0=1,4
> > Я предполагаю,что нужно найти определенный интеграл в пределах от 0 до Т/2 от функции
> > Еm=E0*sin((2πt)/T).А затем полученное значение возвести в квадрат!

>

> Спасибо большое!
> А вторая задача?
> Я так понимаю,поскольку нам дана работа,то ∫ в пределах от 0 до 3 от функции kxdx,должен равняться 50?Решая данный интеграл,можно найти k. А затем опять найти интеграл от функции kxdx в пределах от 0 до 5,где k-найденное значение.Правильно?


> 2)Известно,что сила, противодействующая растяжению пружины пропорциональна её удлинению,чтобы растянуть пружину на 3 см произвели работу 50Дж. Какая работа будет произведена при растяжении пружины на 5 см?
По первым данным и формуле потенц. энергии пружины необх. найти k - коэфф. жёсткости Wп.=0,5*k*x^2, отсюда k=2*Wп./x^2=2*50/0,03^2=...Н/м. По этой же формуле Wп.=0,5*k*x^2=Wп.=0,5*k*0,05^2=...


> > 1) Найти среднее значение квадрата электродвижущей силы E 2m в интервале от t=0 до t=T/2, если электродвижущая сила вычисляется по формуле:
> > Еm=E0*sin((2πt)/T), Е0=1,4
> > Я предполагаю,что нужно найти определенный интеграл в пределах от 0 до Т/2 от функции
> > Еm=E0*sin((2πt)/T).А затем полученное значение возвести в квадрат!

>

Среднее значение всегда ищется распределением по периоду, т.е. Eср.^2(T/2)=(1/T)*∫...


> Среднее значение всегда ищется распределением по периоду, т.е. Eср.^2(T/2)=(1/T)*∫...

Нет.


Физика в анимациях - Купить диск - Тесты по физике - Графики on-line

Реклама:
Rambler's Top100